✅ Schema Validator

Validate data structures against schemas with comprehensive error reporting, multiple schema format support, and custom validation rules.

Validation Configuration

Schema Definition

Data to Validate

Custom Validation Rules (Optional)

🚀 Key Features

Multi-Format Support

Support for JSON Schema, Borsh Schema, and custom validation rules

🔍

Detailed Errors

Comprehensive error reporting with exact location and suggestions

Batch Validation

Validate multiple data objects against schemas simultaneously

🛠️

Custom Rules

Create and apply custom validation rules for specific use cases

📋 Supported Schema Types

JSON Schema

  • • Draft 7 and Draft 2019-09 support
  • • Type validation (string, number, object, array)
  • • Format validation (email, date, uri, etc.)
  • • Custom keywords and validators
  • • Conditional schemas (if/then/else)
  • • Reference resolution ($ref)

Borsh Schema

  • • Struct and enum validation
  • • Primitive type checking
  • • Array and vector validation
  • • Option and nullable types
  • • Custom serialization rules
  • • Anchor IDL compatibility

Custom Schemas

  • • Program-specific validation rules
  • • Account data structure validation
  • • Instruction parameter checking
  • • Cross-field validation
  • • Business logic constraints
  • • Multi-step validation workflows

📖 Usage Examples

Validation Workflows

  1. 1. Choose schema type (JSON Schema, Borsh, Custom)
  2. 2. Input or upload your schema definition
  3. 3. Provide data to validate (JSON, binary, etc.)
  4. 4. Run validation and review detailed results
  5. 5. Export validation report for documentation

Best Practices

  • • Start with built-in schema templates
  • • Test validation with sample data first
  • • Use batch validation for large datasets
  • • Implement progressive validation strategies
  • • Document custom validation rules clearly